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Entanglement and correlation in anisotropic quantum spin systems
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Analytical expressions for the entanglement measures concurrence,i-concurrence, and 3-tangle in terms of
spin correlation functions are derived using general symmetries of the quantum spin system. These relations
are exploited for the one-dimensionalXXZmodel, in particular the concurrence and the critical temperature for
disentanglement are calculated for finite systems with up to six qubits. A recent NMR quantum error correction
experiment is analyzed within the framework of the proposed theoretical approach.
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I. INTRODUCTION

Quantum entanglement was already pointed out by Sc¨-
dinger @1# to be a crucial element of quantum mechani
Research was refocused on quantum entanglement in the
15 years because the field of quantum information theory~cf.
@2,3#! developed rather quickly. Recent papers concern
entanglement in quantum spin systems address ques
about the maximum entanglement of nearest-neighbor qu
belonging to a ring ofN qubits in a translationally invarian
quantum state@4#, the dependence of entanglement betwe
two spins on temperature, external magnetic field stren
and/or anisotropy for the one-dimensional isotropic Heis
berg model@5–10#, the Ising model@11#, the three-qubits
XXZmodel@6#, theXXZmodel with defects@12#, and theXY
model @13#. Further topics are entanglement close to qu
tum phase transitions@6,14–18# and global entanglemen
with an application to quantum error correction co
subspaces@19#.

In the present paper several new aspects of quantum
tanglement are discussed, in particular how the various m
sures of entanglement can be related to correlation functi
The importance of the relation between entanglement
correlations has been emphasized very recently@20,21#. Af-
ter introducing briefly the basic notations and definitions
Sec. II, the functional dependences of the entanglement m
sures concurrence@22,23#, i-concurrence@24# ~in small sys-
tems!, and 3-tangle@25# on spin correlation functions~in-
cluding spin expectation values! are established in Sec. III
Necessary and sufficient conditions for a positive conc
rence are found. In Sec. IV the expectation values, corr
tion functions, and concurrence of both the ground and
excited states of the one-dimensionalXXZ model, as well as
the mixed state of the quantum system at finite temperat
are calculated analytically in terms of the eigenenergies.
concurrence of anN54 quantum spin system and the critic
temperature where the concurrence vanishes are examin
detail. Results are also presented forN52, 3, 5, and 6 qubit
1050-2947/2003/68~3!/032318~8!/$20.00 68 0323
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systems. Finally, the entanglement of a quantum system
N55 qubits in a NMR quantum error correction experime
@26# is discussed and partly quantified in terms of the e
tanglement measures in Sec. V.

II. BASIC NOTATIONS

Consider a quantum system consisting ofN qubits on
numbered sites. The basis of the state of one qubit is gi
by u0&, u1&, which are the eigenstates ofsz (sx, sy, sz de-
note the Pauli spin operators! with eigenvalues21, 11, re-
spectively. An unentangled state ofN qubits is the direct
product of the single qubits, e.g.,uc&12̄ N5u0&1^ u0&2^¯

^ u0&N5..u00̄ 0&12̄ N . If unambiguous then indices indica
ing site numbers will be omitted in the following because t
qubits are arranged with increasing site number. Thus
information is contained in the ordering of the qubits. T
Hamiltonian H and the density operatorr describing such
quantum spin systems are usually expressed in terms o
identity operatorI, the Pauli spin operators, and/or the o
eratorss6

ª

1
2 (sx6 isy).

The state of the spin system becomes mixed at finite t
peratures. The operator representing this state is freque
called the thermal density operator. In thermodynami
equilibrium, it is given by the operatorr5Z21 exp@2bH#,
whereb5(kBT)21, kB denotes the Boltzmann constant,T is
the temperature of the system, andZ5Tr exp@2bH# is the
partition function.

Spin expectation values and correlation functions are
fined as

Kn¯m
n¯m

ª^sn
n
¯sm

m&5Tr~rsn
n
¯sm

m !, ~1!

wheren,...,mP$1,...,N% andn,...,mP$x,y,z,1,2% specify
the qubit and the operator, respectively. Furthermore, in w
follows, the z component of the total spin operatorSz

ª(n51
N sn

z , the spin-flip operatorFª^ n51
N sn

x , and assum-
©2003 The American Physical Society18-1
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ing periodic boundary conditions (N1 l→ l ), the translation
operatorTl defined byTl uc&12̄ N5uc&11 l ,21 l ,...,N1 l will be
used occasionally.

III. ENTANGLEMENT AND CORRELATION FUNCTIONS

The functional dependence of entanglement~measured in
terms of the concurrence,i-concurrence, and 3-tangle! on
correlation functions of the operatorssx, sy, sz, s6 is now
discussed as far as possible without an explicit specifica
of the model Hamiltonian. Using the basisu0& and u1&, the
expansion coefficients of the~reduced! density operator of
one qubitn (1<n<N) are given by spin expectation value
only,

r11
~1!5 1

2 ~12Kn
z!, ~2a!

r22
~1!5 1

2 ~11Kn
z!, ~2b!

r12
~1!5~r21

~1!!* 5Kn
15~Kn

2!* . ~2c!

In the same manner, the~reduced! density operator of two
qubitsn andm (1<n,m<N) can be expressed in the bas
u00&, u01&, u10&, and u11&. If the Hamiltonian commutes with
thez component of the total spin operator, the correspond
expressions can be simplified, yielding

r11
~2!5 1

4 ~12Kn
z2Km

z 1Knm
zz !, ~3a!

r22
~2!5 1

4 ~12Kn
z1Km

z 2Knm
zz !, ~3b!
e

is
n

th
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r33
~2!5 1

4 ~11Kn
z2Km

z 2Knm
zz !, ~3c!

r44
~2!5 1

4 ~11Kn
z1Km

z 1Knm
zz !, ~3d!

r23
~2!5~r32

~2!!* 5Knm
125~Knm

21!* , ~3e!

and all other coefficients are equal zero.
The concurrence Chas been introduced by Wootters@23#

as a measure to quantify entanglement. Letr be the density
operator representing a pure or mixed state of two qubitn
andm. Then

Cnm5max~0,C̃nm!, ~4!

C̃nm52lmax2(
j 51

4

l j , ~5!

where lmaxªmax(l1,l2,l3,l4) and l1 , l2 , l3 , l4 are
the non-negative, real eigenvalues of the matrixR
5Ar(sy

^ sy)r* (sy
^ sy).

For a density operator with the coefficients~3!, one has

l15l25 1
4 j1, ~6a!

l3,45
1
4 zj264uKnm

12uz, ~6b!

j65A~16Knm
zz !22~Kn

z6Km
z !2, ~6c!
C̃nm55
1
2 ~4uKnm

12u2j1! if l15l2,l3 and j2.4uKnm
12u,

1
2 ~j22j1! if l15l2,l3 and j2<4uKnm

12u,

2 1
2 j2 if l15l2>l3 ,l4 and j2.4uKnm

12u,

22uKnm
12u if l15l2>l3 ,l4 and j2<4uKnm

12u.

~7!
t
led

is
or-
nt

wo
ate
eld

-
n-
Thus Eqs.~4! and~7! yield the functional dependence of th
concurrence on correlation functions usingSz symmetry
only.

Cases 3 and 4 of Eq.~7! are not interesting becauseC̃nm
<0 and thusCnm50. With the help of cases 1 and 2, it
straightforward to find the following necessary and sufficie
conditions for entanglement:

Knm
zz 2Kn

zKm
z ,0, ~8!

Knm
zz 2Kn

zKm
z ,0 and j1,4uKnm

12u, ~9!

respectively. These results are similar to the conjecture
the ground state of the transverse Ising model and theXY
model is entangled if and only if, according to@15#, Knm

mn

2Kn
mKm

n Þ0.
t

at

Equations~8! and ~9! can be interpreted in the following
way: If the state of two qubits in a system withKn

z50 and/or
Km

z 50 is entangled then thez components of the spins mus
be correlated antiferromagnetically. The maximal entang
states are the two Bell statesuc6&5(1/&)(u01&6u10&). If
Kn

zKm
z .0, e.g., if an appropriate external magnetic field

applied, entanglement of qubits with ferromagnetically c
relatedz components of the spins is possible. The sufficie
condition requires, moreover, that the correlations of the t
qubits need to be greater than a minimum value to cre
entanglement. Again an appropriate external magnetic fi
reduces this demand.

If the system exhibits additional spin-flip symmetry,Kn
z

5Km
z 50 andKnm

125Knm
21 result. Then Eqs.~3!, ~6!, and~7!

simplify and case 1 of Eq.~7! coincides to the result pub
lished in @8#. Necessary and sufficient conditions for e
tanglement are now
8-2



-

in

gle

b-

e
.
le

-
va

h

s

th
ce

on
ith
Eq
s.

t-
an-
In

ies.

e

in

ow

f

in

ur-
rest-
ei-
ss
ms
the

opic
f

ENTANGLEMENT AND CORRELATION IN ANISOTROPIC . . . PHYSICAL REVIEW A 68, 032318 ~2003!
Knm
zz ,0, ~10!

Knm
zz ,0 and 1,uKnm

xx u1uKnm
yy u1uKnm

zz u, ~11!

respectively. Here the relationKnm
xx 5Knm

yy 52Knm
12 , which is

correct because ofSz andF symmetry, was used.
The i-concurrence C̄has been proposed by Rungtaet al.

@24# as an entanglement measure. LetAB be a quantum sys
tem consisting of two subsystemsA andB with dimensions
dA anddB , respectively. The density operators represent
the state of these systems are denotedrAB , rA , and rB ,
respectively. IfrAB represents a pure state then the entan
ment of this state with respect to the two subsystemsA andB
is quantified by

C̄A2B5A2@12Tr~rA
2 !#, ~12!

whererA5TrB(rAB) is the reduced density operator of su
system A. It is known from @24# that 0<C̄A2B

<A2@(d21)/d#, whered5min(dA ,dB). A different notation
is occasionally used for qubits: For example,C̄12– 34denotes
the entanglement of the state where subsystemsA and B
consist of qubits 1,2 and 3,4, respectively. Note thatCnm

5C̄n2m if the state of qubitsn andm is pure.
From Eqs.~2! and ~12!, it follows that

C̄n2rest5A12~Kn
z!224Kn

1Kn
2. ~13!

If the Hamiltonian commutes withSz, Eqs.~3! and~12! yield

C̄nm2rest5A3
2 2 1

2 @~Knm
zz !21~Kn

z!21~Km
z !2#24uKnm

12u2.
~14!

In an analogous way thei-concurrence of three and mor
qubits can be expressed in terms of correlation functions

Two highly entangled qubits cannot be much entang
with the remaining system and vice versa. This property
ensured in Eqs.~13! and ~14!. They indicate high entangle
ment in the system if the absolute values of expectation
ues and correlation functions are as small as possible~pref-
erable zero!. This is contrary to the requirements for a hig
concurrence.

The 3-tanglet has been suggested by Coffmanet al. @25#
to quantify the entanglement of a pure state of three qubit
2, and 3 in the following way:

t1235C1 – 23
2 2C12

2 2C13
2 , ~15!

where C1 – 23
2 54 det(r1)5C̄1–23

2 and r15Tr23(r123). Note
thatt123 does not contain the entanglement of two out of
three qubits andt123 does not depend on the arbitrary choi
of qubit 1 as the ‘‘central’’ qubit.

The 3-tanglet123 can be expressed in terms of correlati
functions if the Hamiltonian of the system commutes w
Sz. This is achieved by expressing the right-hand side of
~15! in terms of correlation functions with the help of Eq
~4!, ~7!, and~13!.
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IV. XXZ MODEL

The HamiltonianH(J,D) of the one-dimensional~spatial!
homogeneousXXZ model reads~cf. @27#!

H5
1

2
J(

n51

N S sn
1sn11

2 1sn
2sn11

1 1
1

2
Dsn

zsn11
z D . ~16!

The coupling constantJ specifies the strength of neares
neighbor spin interaction. Anisotropy in spin space is qu
tified by D. Periodic boundary conditions are assumed.
what follows, all energies are measured in units ofJ.

The XXZ model possesses some interesting symmetr
The Hamiltonian~16! commutes with thez component of the
total spin operatorSz, the spin-flip operatorF, and the trans-
lation operatorTl . UnfortunatelySz andF do not commute,
but of course it is possible to classify eigenstates ofH by
eigenvaluess of Sz and eigenvaluesk of ( iN/2p)ln@T1#. Be-
cause ofF symmetry, it is sufficient to solve the eigenvalu
problem ofH in subspace withs<0.

For even N, it was shown in @28# that H(J,D) and
H(2J,2D) possess a spectrum of identical eigenvalues
each subspace ofs because the operatorAª^ n51,3,...

N21 sn
z

commutes with Sz and AH(J,D)A215H(2J,2D)
52H(J,2D).

Some correlation functions of theXXZmodel are interde-
pendent. If only eigenstates with equals participate in the
thermal density operator then it is straightforward to sh
that

K
m

1
1
¯m

1

j1

z¯z
5~21!~N/2!2sK

m
2
1
¯m

2

j2

z¯z
, ~17!

where m1
1, . . . ,m1

j1 and m2
1, . . . ,m2

j2 are the elements o
M1 and M2 , respectively, j11j25N, M1øM2
5$1,2,...,N%, andM1ùM25B.

If H hasSz andF symmetry, onlyKnm
zz andKnm

12 appear in
Eq. ~7!. These correlation functions can be expressed
terms of the partition function. For example,Kn(n11)

zz and
Kn(n11)

12 read~cf. @29#!

Kn~n11!
zz 52

4

NJb

d

dD
ln Z, ~18!

Kn~n11!
12 52

1

Nb S d

dJ
2

D

J

d

dD D ln Z. ~19!

Using these relations, the correlation functions and conc
rences of the eigenstates and the thermal state of nea
neighbor qubits can be calculated by knowing only the
genvalues of the Hamiltonian. It is straightforward to expre
further expectation values and correlation functions in ter
of the partition function using the same method. Possibly,
Hamiltonian has to be supplemented~e.g., adding toH ap-
propriate external magnetic field terms yieldsKn

z again as
derivatives of lnZ).

As another application of Eq.~7!, the concurrence of
nearest-neighbor qubits of the ground state in the anisotr
XXZ model with J521, D52 1

2 , and an odd number o
8-3
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TABLE I. Classification of the eigenstates of theXXZmodel (N54) and the concurrence of nearest- and next-to-nearest neighbor q
Normalization factors are given ash1,2ªA412(m1,2)

2, wherem1,2ª2
1
2 D7

1
2AD218.

s k E uc& Cn(n11) Cn(n12)

22 0 D u0000& 0 0

21 0 1 1
2 (u1000&1u0100&1u0010&1u0001&)

1
2

1
2

21 1 0 1
2 (u1000&1 i u0100&2u0010&2 i u0001&)

1
2

1
2

21 2 21 1
2 (u1000&2u0100&1u0010&2u0001&)

1
2

1
2

21 3 0 1
2 (u1000&2 i u0100&2u0010&1 i u0001&)

1
2

1
2

0 0 m1 (1/h1)(u1100&1u0110&1u0011&1u1001&1m1u1010&
1m1u0101&) maxH0,

22m121

21~m1!2 J maxH0,
22~m1!2

21~m1!2J
0 0 m2 (1/h2)(u1100&1u0110&1u0011&1u1001&1m2u1010&

1m2u0101&) maxH0,
2m221

21~m2!2J maxH0,
22~m2!2

21~m2!2J
0 1 0 1

2 (u1100&1 i u0110&2u0011&2 i u1001&) 0 1
0 2 0 1

2 (u1100&2u0110&1u0011&2u1001&) 0 1
0 2 2D (1/&)(u1010&2u0101&) 0 0
0 3 0 1

2 (u1100&2 i u0110&2u0011&1 i u1001&) 0 1
s
h
s
en

f
g

,

f
ge

r

-
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or
d

qubits is considered. It is known from@30# that Kn(n11)
zz

52 1
2 1(3/2N2) and Kn(n11)

12 5 1
2 Kn(n11)

xx 5 1
2 Kn(n11)

yy 55/16
1(3/16N2). Therefore Kn(n11)

zz ,0 and 1,uKn(n11)
xx u

1uKn(n11)
yy u1uKn(n11)

zz u for N>3. Thus the concurrence i
Cn(n11)5(3/8)@12(1/N2)#. Concurrence is increasing wit
oddN whereas the concurrence of nearest-neighbor qubit
the ground state in the isotropic antiferromagnetic Heis
berg model decreases with increasing evenN in all cases that
have been calculated by O’Connoret al. @4#.

Now the XXZ model is considered on a finite chain. O
course, the calculation of eigenstates and eigenvalues is
ting more involved with increasingN in general. Therefore
in what follows, only small spin chains with 2<N<6 are
considered.

For the caseN54, the eigenstatesuc& are given in Table I
together withCn(n11) andCn(n12) , i.e., the entanglement o
nearest- and next-to-nearest neighbor qubits in these ei
states measured in terms of concurrence~4!. Eigenstates with
s.0 are obtained by applyingF on eigenstates withs,0.

The partition function, correlation functions, and concu
rences at finite temperatures are calculated as

Z52z2D1zD12z2112z171z2m11z2m2, ~20!

Kn~n11!
zz 5

1

Z S 2z2D2zD2
~m1!2

21~m1!2 z2m1

2
~m2!2

21~m2!2 z2m2D , ~21!

Kn~n11!
12 5

1

Z S 1

2
z212

1

2
z1

m1

21~m1!2 z2m1

1
m2

21~m2!2 z2m2D , ~22!
03231
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Cn~n11!5maxH 0,
1

Z S Uz212z1
2m1

21~m1!2 z2m1

1
2m2

21~m2!2 z2m2U2U2z2D1z211z1
7

2

1
1

21~m1!2 z2m11
1

21~m2!2 z2m2U D J , ~23!

Kn~n12!
zz 5

1

Z S 2z2D1zD231
~m1!222

21~m1!2 z2m1

1
~m2!222

21~m2!2 z2m2D , ~24!

Kn~n12!
12 5

1

Z S 1

2
z211

1

2
z2

3

2
1

1

21~m1!2 z2m1

1
1

21~m2!2 z2m2D , ~25!

Cn~n12!5maxH 0,
1

Z S Uz211z231
2

21~m1!2 z2m1

1
2

21~m2!2 z2m2U2U2z2D1zD1z211z12

1
~m1!2

21~m1!2 z2m11
~m2!2

21~m2!2 z2m2U D J , ~26!

wherezªebJ andm1,2ª2 1
2 D7 1

2 AD218.
The concurrenceCn(n11) of the state of two nearest

neighbor qubits as a function of anisotropyD and tempera-
ture T is depicted in Fig. 1. The energies together with t
concurrences of theindividual eigenstates are responsible f
all described features. AtT50, the change of the groun
8-4
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state from E5D (s562,k50) to E5m1 (s50,k50)
causes the discontinuity atD521. The position of the maxi-
mum inCn(n11)(D,T50) is atD5Dmax51. With increasing
temperature,Dmax increases butCn(n11)(Dmax,T) decreases
monotonously. For fixedD, the concurrenceCn(n11) is a
monotonously decreasing function of temperature. This
caused by the inclusion of excited states. The plateau re
in the dependence ofCn(n11) on T for D*4 stems from the
with increasingD increasing gap between the energies of
lowest and the other excited states. Of course, if the ther
energy is high enough to provide the further excited sta
with significant weights, the concurrence decreases fa
again. The critical temperatureTc is defined as the lowes
temperature above which the entanglement measure~here the
concurrence! indicates an unentangled~part of the! state~cf.
@@31#, p. 155#!. It is easily identified as the intersection of th
zero surface and the surface of the functionCn(n11) in Fig. 1.
The projection of the critical temperatureTc and the lines of
equalCn(n11) are depicted in the lower part of Fig. 1. In th
way it is easy to identify parameter regions of states wit
certain minimal entanglement. Note that lines of finite eq
concurrence are not increasing monotonously with incre
ing D but Tc does.

In Fig. 2 the critical temperatureTc of the entanglemen
~measured in terms of concurrence! of the state of two qubits
in the XXZ model (J"0) for 2<N<6 as a function of an-
isotropyD is shown.

The transformationJ→2J andD→2D leaves the criti-
cal temperature invariant for evenN. If uc& is an eigenstate o
H(J,D) with eigenvalueE then uf&5Auc& is the corre-
sponding eigenstate ofH(2J,2D) with the same eigen
value and identical entanglement becauseA is a local unitary
transformation and entanglement is invariant under local u
tary transformations. Thus the thermal density operators
both Hamiltonians are unitary equivalent and possess ide
cal entanglement and critical temperatures. No such sym

FIG. 1. The 3D plot shows the concurrenceCn(n11) of the state
of two nearest-neighbor qubits in theXXZmodel (N54,J.0) as a
function of anisotropyD and temperatureT. The 2D plot shows the
projection of the critical temperatureTc ~ ! and lines of equal
Cn(n11) ~ !.
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try exists for oddN. Actually, for the states of neares
neighbor qubits (N53) and next-to-nearest neighbor qub
(N55) entanglement is only possible forJ,0. In all con-
sidered cases the inequalityTc(N,J,0)>Tc(N,J.0) is
valid.

One observes in Fig. 2 thatTc50 for (J/uJu)D<21 in-
dependently ofN and the choice of the two qubits. It i
known from @27# that for all N, J,0 and D>1 the two
eigenstates of the Hamiltonian~16! with s56N/2 are
ground states. These ground states are not entangled and
cause the thermal state to be unentangled for all temp
tures. The same reasoning applies for evenN, J.0 andD
<21 because of the symmetries of theXXZ model with
periodic boundary conditions. The ground state may cha
at differentD for odd N and J.0 ~e.g., atD'20.809 015
considering theXXZ model withN55 andJ.0).

Furthermore, critical temperature of geometrically equiv
lent aligned qubits is decreasing with increasingN for even
N. This tendency is consistent with the dependence of c
currence onN in the isotropic Heisenberg model with a
applied external magnetic field~cf. @5#!.

FIG. 2. Critical temperatureTc of the concurrence of the state o
two qubits in theXXZ model (J"0) for 2<N<6 as a function of
anisotropyD. Panel ~a! shows nearest-neighbor qubits forN52
~•––•––!, N54 ~–••–••!, andN56 ~ • • • !; next-to-nearest
neighbor qubits forN54 ~ ! and N56 ~• • • •!; next-to-
next-to-nearest neighbor qubits forN56 ~ !. Panel~b! displays
nearest-neighbor qubits forN53 (J,0: –••–••; J.0: identical
zero! andN55 (J,0: ; J.0: !; next-to-nearest neigh
bor qubits forN55 (J,0: • • • •; J.0: identical zero!. The
insets give the dependence of these functions at larger value
(J/uJu)D. Of course, the entanglement vanishes in the Ising mo
limit of Eq. ~16!, i.e., for uDu→`.
8-5
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V. ANALYSIS OF AN EXPERIMENT

Finally, the entanglement of the state of the quantum s
tem in a NMR experiment about quantum error correct
@26# is quantified in terms of concurrence,i-concurrence, and
3-tangle. Five qubits are provided by different atoms in13C
labeled transcrotonic acid~synthesis and properties, see@32#!
solved in deuterated acetone.

One molecule can be approximately described by the o
dimensional spatial inhomogeneousXXZmodel, including an
external magnetic field, because the coupling constant
non-neighboring qubits are much smaller than the coup
constants of nearest-neighbor qubits~see @26,32#!. The
HamiltonianH(Jn ,D,vn) of this model reads

H5 1
2 (

n51

4

Jn~sn
1sn11

2 1sn
2sn11

1 1 1
2 Dsn

zsn11
z !

2 1
2 (

n51

5

vnsn
z , ~27!

where the coupling constantsJn (n51,...,4) specify the in-
homogeneous strength of nearest-neighbor interaction,D de-
termines the anisotropy in spin space, and the effect of
external magnetic field is included invn5vn

p1vn
c (n

51,...,5), which are the sums of precession frequenciesvn
p

FIG. 3. Encoding of qubit 2 based on the five-qubit code. T
horizontal lines represent the qubits. The gates denotedusa

a and

180°sa
zsb

z implemente2( i /2)usa
a

ande2( i /4)psa
zsb

z
, respectively. Here

aP$x,y,z% anda,bP$1,2,3,4,5%.
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and chemical shiftsvn
c for each individual qubit~data are in

@26,32#!. Of course, now open boundary conditions a
applied.

The five-qubit code for quantum error correction is us
to encode qubit 2 in the experiment. The encoding is sho
in Fig. 3. The quantum system is in a highly mixed state, i
the coefficients of the density operator are close to the c
ficients of the identity operator because the experimen
performed at room temperature. In the beginning, the qu
tum system is prepared in a way that only molecules in
initial state u11111& give a signal on NMR measurement
Then one says that the quantum system is in thepseudopure
stateu11111& ~Ref. @33#!. The pseudopure stateu11111& is an
eigenstate of the Hamiltonian~27! as well as the Hamiltonian
including all interactions of qubits and the applied extern
magnetic field described in@26,32#. Furthermore, it is an
eigenstate ofSz. Thus going to a frame of reference th
rotates around thez axis does not change the density opera
of the initial state~see@@34#, p. 287#!.

The pseudopure state of the quantum system at sev
stages~A, B, C, D, and E, cf. Fig. 3! during encoding was
calculated by the product-operator formalism~see @@34#,
Chap. 11#!. Therefore, the conservation of the pseudopur
of the state of the quantum system is assumed, i.e., the
no interaction among different molecules and encoding
implemented so quickly that no decoherence occurs. The
sults are given in Table II together with the expectation v
uesKn

z andKn
15(Kn

2)* ~with n51,2,...,5).
It is straightforward to calculate the entanglement of o

qubit with the remaining qubits by inserting these expec
tion values into Eq.~13!. In this way it is easy to get a quick
overview about the possible entanglement in the quan
system. Note that it is not appropriate to use Eqs.~4! and~7!
or ~14! here because the pseudopure state does not co
with the necessarySz symmetry in general.

The pseudopure state at the various stages is now
cussed in detail: The initial state is not entangled. At p
ition A, the state is not entangled as well. So far only loc
operations have been performed and these cannot c
entanglement.

At position B, qubits 1, 2, and 5 are not entangled b
C3451. Actually, the state of qubits 3 and 4 at position

e

TABLE II. Pseudopure stateuc& of the quantum system at several stages during encoding. The expectation valuesKn
z and Kn

1

5(Kn
2)* ~with n51, 2, ..., 5! are given for each state. Notation:u1x&ª(1/&)(u1&1u0&), u0x&ª(1/&)(u1&2u0&), u1y&ª(1/&)(u1&

1 i u0&), u0y&ª(1/&)(u1&2 i u0&), u1z&ªu1&, andu0z&ªu0&.

Position uc& K1
z K2

z K3
z K4

z K5
z K1

1 K2
1 K3

1 K4
1 K5

1

A u1x1z1x0y1z& 0 1 0 0 1 1
2 0 1

2 2
i
2 0

B (1/&)u1y1z& ^ (u1z1x&2u0z0x&) ^ u1z& 0 1 0 0 1 i
2 0 0 0 0

C (1/&)u1y& ^ (u0x1z0z&1u1x0z1z&) ^ u1z& 0 0 0 0 1 i
2 0 0 0 0

D 1
2 u1y& ^ @ u0x1z& ^ (u1z0x&1u0z1x&)2 i u1x0z& ^ (u1z0x&

2u0z1x&)]
0 0 0 0 0 i

2 0 0 0 0

E (1/2&)$u1x& ^ @ u0y1z& ^ (u1z1z&1u0z0z&)2u1y0z& ^ (u1z1z&
2u0z0z&)] 1

i u0x& ^ @ u0y0z& ^ (u1z0z&1u0z1z&)2u1y1z& ^ (u1z0z&
2u0z1z&)] %

0 0 0 0 0 0 0 0 0 0
8-6
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ENTANGLEMENT AND CORRELATION IN ANISOTROPIC . . . PHYSICAL REVIEW A 68, 032318 ~2003!
readsuc&345
1
2 (u11&1u10&2u01&1u00&) and it conforms to

the Bell statesuc6& and uf6&5(1/&)(u00&6u11&) up to a
local unitary transformation.

At position C, only qubits 2, 3, and 4 are entangle
C̄2-345C̄3-245C̄4-235t23451, where the state of these qu
bits readsuc&2345

1
2 (u110&1u101&2u010&1u001&). It con-

forms to the cat state (1/&)(u000&1u111&) up to a local
unitary transformation. Two out of these three qubits are
entangled as usual for a cat state.

At position D, only qubit 1 is not entangled. The state
the remaining qubits conforms to1

2 (u0110&1u0101&
2 i u1010&1 i u1001&) up to a local unitary transformation
The analysis of qubits 2, 3, 4, and 5 shows no entanglem
of the state of two of these qubits. The entanglement o
state of three qubits cannot be calculated because tracin
a qubit generates in general a mixed state andi-concurrence
can only be applied to pure states. But it isC̄2-3455C̄3-245

5C̄4-2355C̄5-23451, C̄23-4551, andC̄24-355C̄25-345A3/2.
At the end of the encoding sequence~position E!, all qu-

bits are entangled: C̄A-B51 if A indicates one arbitrary qu
bit and B the remaining four qubits;C̄A-B5A3/2 if A indi-
cates two arbitrary qubits andB the remaining three qubits
Again there is no entanglement of the state of two qubits
the entanglement of a state of three or four qubits canno
quantified so far. These results coincide with the ones in@19#.
It was already pointed out there that all states in a cer
five-qubit error correction code subspace possess max
global entanglement but vanishing concurrences.

Clearly, in this experiment, entanglement is created dur
encoding and it expands in a geometrical sense, i.e.,
number of qubits involved in the entanglement increa
with the progressing encoding sequence.

Unfortunately, it is not possible to quantify the entang
ment of the state at positions D and E completely becaus
the lack of suitable measures. But all calculat
i-concurrences exhibit their maximal values at position
-

03231
:

t

f

nt
a
off

d
e

in
al

g
he
s

-
of

.

Thus it is a reasonable conjecture that an entanglemen
four or less qubits does not exist there because entangle
cannot be shared arbitrarily~cf. @25#!.

VI. SUMMARY

The entanglement measures concurrence,i-concurrence
~for one or two qubits in one subsystem!, and 3-tangle have
been successfully expressed in terms of correlation functio
In addition, necessary and sufficient conditions for a posit
concurrence have been formulated. These results have
used in the remaining paper because they can simplify
culations: The concurrence of eigenstates or the thermal s
have been calculated analytically knowing only the energ
of the eigenstates and their dependences on the paramet
the system. Furthermore, potential quantum entanglemen
a quantum system has been detected by the examinatio
spin expectation values.

A detailed analysis of concurrence and critical tempe
ture in the XXZ model with 2<N<6 qubits has been
accomplished.

Finally, the entanglement of the state in a NMR expe
ment has been discussed quantitatively. Different kinds
entanglement have been identified. This calculation sho
the relevance of entanglement measures in actual exp
ments because they allow an analysis of the importanc
entanglement for the quantum algorithms. Despite the in
mation, which is obtained with the available measures, f
ther measures are needed for a complete insight.

The entanglement measures might be useful design
new experiments~possibly utilizing advanced types of qu
bits, e.g., spin cluster qubits@35#! that set up states with
different entanglement and prove or disprove the benefi
entanglement in different quantum algorithms.
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